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ABSTRACT

In this paper we consider pseudo-holomorphic curves in complex Grass-
miannians. Let 0,1, -+ ,@ay : S? - Gj,n be a linearly full non-
degenerate pseudo-holomorphic harmonic sequence, and let degy, and
Ko be the degree and the Gauss curvature of po (@ = 0,1,---,0)
respectively. Assume that ¢o, 91, - ,@a, is totally unramified. Then
we prove that (i) degpa = k(ag — 2a) for all « = 0,1, -+, ap; (ii)
Ko = m if Ko is constant for some a« = 0,1, -, ap, . We
also give some conditions for pseudo-holomorphic curves with constant
Kahler angle in complex Grassmiannians to be of constant curvature.

1. Introduction

Minimal surfaces of constant curvature in S™ have been classified completely
(cf., [3]). Minimal 2-spheres of constant curvature in a complex projective space
were also classified in [1] and [2], and rigidity theorems of holomorphic curves
and conformal minimal spheres in a complex projective space were obtained (cf.,
[2], [5]). Our interest is to investigate conformal minimal spheres in a complex
Grassmann manifold.
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In this paper we will use theory of harmonic maps to study geometry of
pseudo-holomorphic curves in a complex Grassmann manifold. Many results of
harmonic maps of surfaces into Lie groups and complex Grassmann manifolds
were obtained (cf., [4], [7], [9], [13] and [14]). These results are used to study
geometry of minimal spheres immersed in a complex Grassmann manifold. Har-
monic sequence is one of the main tools we use in this paper.

Let ¢ be an immersion of a Riemann surface M into a Kahler manifold N. Its
Kahler angle is defined to be the angle between Jdp(9/0x) and dp(0/dy), where
z = x ++/—1y is a local complex coordinate on M and J denotes the complex
structure of N. Chern and Wolfson (cf., [6]) pointed out the importance of the
Kahler angle in the theory of minimal surfaces in K&hler manifolds. In 1988 J.
Bolton, G. R. Jensen, M. Rigoli and L. M. Woodward (cf., [2]) used the Kachler
angle to study conformal minimal spheres in complex projective spaces.

In [8] and [12] pseudo-holomorphic curves in a complex Grassmann manifold
were studied. Recently, the classification of holomorphic spheres of constant
curvature in Gg 5 was investigated (cf., [11]). In this paper we will discuss
curvature, Kéhler angle and degree of pseudo-holomorphic curves in a complex
Grassmann manifold.

In the fourth section we will discuss the linearly full non-degenerate pseudo-
harmonic sequence ©g, ©1, .- -, Pag : S2 — Gr.n (cf., [12]). Let degp, and K, be
the degree and the curvature of ¢, respectively. Suppose that g, ©1,. .., @aq,
is a totally unramified harmonic sequence. We will prove that (i) degy, =
k(o —2a) for every a = 0,1,..., ap; (ii) Ko = m if K, is constant
for some o = 0,1,...,ap (see Theorem 4.1). By this result we get that the
curvature of non-degenerate holomorphic curves of constant curvature in G, 25,
equals 4/n (see Corollary 4.2). We will also give an example (the case of Ga¢)
to show that it is possible that some elements in the non-degenerate harmonic
sequence determined by a holomorphic curve of constant curvature in Gy
(2 <k <n—2) are not of constant curvature.

In the fifth section we will discuss pseudo-holomorphic curves with constant
Kahler angle in a complex Grassmann manifold and obtain Theorems 5.1 and
5.2. These theorems are generalizations of Bolton’s results for complex projec-

tive spaces (cf., [2]).
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2. Minimal immersions and harmonic sequences

Let U(n) be the unitary group. Let M be a simply connected domain in the
unit sphere S? and let (2,%) a complex coordinate on M. We take the metric
ds?, = dzdz on M. Denote

o = 0 1 1 =
0=—, 0=—, A,=-510s, A;= -5 '0s.
0z’ oz’ 2" 9% 2° %
Let s : M — U(n) be a smooth map. Then s is a harmonic map if and only if
it satisfies the following equation (cf., [13]):

(1) 5Az = [AZ;AE]

If s : S — U(n) is harmonic, then s is conformal and minimal. Let w = g~!dg
be the Maurer—Cartan form on U(n), and let dsQU(n) = %trww* be the metric
on U(n). Then the metric induced by s on S? is locally given by

(2) ds* = —trA, Azdzdz.

Let Gi.n, be the complex Grassmann manifold consisting of all complex k-
dimensional subspaces in C™. Here we consider G, as the set of Hermit-
ian orthogonal projections from C™ onto a k-dimensional subspace in C", i.e.,
Grn = {p is a Hermitian orthogonal projection onto a k-dimensional subspace
in C"}. Then ¢ : S? — Gk, is a Hermitian orthogonal projection onto a k-
dimensional subbundle  C S? x C", and s = ¢ — ¢+ is a map from S? into
U(n). It is well-known that ¢ is harmonic if and only if s is harmonic. ¢ is a
holomorphic curve (or an anti-holomorphic curve) in Gy, if and only if
©tdp =0 (or ptdp = 0).
By using ¢, a harmonic sequence (cf., [7], [14]) is derived as follows:

8/ 8/ / /

(3) O =P P F— o (P b e
6// 8// 6// 6//

(4) O = (o Pl > g e

where g, = 001 and p_o = 8”@ _411 are Hermitian orthogonal projections
from S? x C" onto Im (cpﬂ;_l(?gaa,l) and Im (gpfa+15ga,a+1) respectively, a =
1,2,....

Let ko = rank (¢,) and k_, = rank (¢_,) for a = 0,1, .... We say that ¢, in
(3) (resp., p_q in (4)) is non-degenerate if k, = kqoy1 (resp., k_q = k—a—1)-
If ¢ is a holomorphic curve in (3), then there are finite elements, which are
mutually orthogonal, in (3).
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Suppose that ¢ : S? — Gy, is a pseudo-holomorphic curve (¢ is obtained by
some holomorphic curves ¢y via d’), i.e. ¢ belongs to the following harmonic
sequence (cf., [8])

o o' o' o' o o' o
(5) 0’—>900’—>901’—’""—>90:80a’—>""—’80a0’—’0-

If ko = kg for all o, = 0,...,a0 in (5), then ¢ is also obtained by the
anti-holomorphic curve ¢4, via 8", and (5) is uniquely determined by ¢ (cf.,
[7]). We say that (5) is a non-degenerate harmonic sequence associate
to ¢ and «g is the length of this non-degenerate harmonic sequence.

Definition: Let ¢ : S* — Gy, be a map. ¢ is linearly full if Im(¢) cannot
be contained in any proper trivial subbundle S? x C™ of S? x C" (m < n).

In this paper, we always assume that ¢ is a linearly full pseudo-holomorphic
curve. Under this assumption, we have kg + - - - + ko, = n in (5).

For the harmonic sequence (5) we choose the local unitary frame ej, ea, ..., e,
of S? x C™ such that egyt...ik, ,415---Chot+k, locally span subbundle
Im ((péfl&pu_l) of $2 x C", where « = 1,2, ..., ay.

Let W, = (ek0+___+ka71+1, ol ek0+___+ka) be an (n X k,)-matrix for a =
1,...,a0, and let Wy = (e, ..., eg,) be an (n x kg)-matrix. Then, we have

(6) Yo = WaWy,

(7) Wi Wa = I sy WiWapr =0, W W,_1 =0.

By (7), a straightforward computation shows that

(8)

a—1

W = War1Qa + Wala,
oW, = —Wo 1 Q5| — W05,

where Q4 is a (kat1 X ko)-matrix and ¥, is a (ko X kq)-matrix for a =
0,1,2,..., a0, and Q_; =Q,, =0.
It is very evident that integrability conditions for (8) are

(9) 00 = Tk Q0 — Q05
(10) OV, + 0V = Qi Qy + VAT, — Q105 — U, 0.
By (8), A" and A(;‘) for ¢, are given by

(11) A = W Qo W — W1 QW
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(12) AL = W W+ W W

Now we assume that ¢, is non-degenerate, then | det Q, |2dz*>dz*> is a well-
defined invariant and has only isolated zeros on S2.
Set 1o = tr(Q,27%). It can easily be verified that (cf., [12])

o =1 (9200aBpa) a1+ 1o = —tr (AL AL,
and we have
(13) 2001og |det Q| = la—1 — 2l + lay1.
Remark: If (5) is a non-degenerate harmonic sequence, then (13) holds for all
a =0,1,...,ap — 1, where Iy = l,, = 0. When k, = 1 for all «, then

lo = |detQ,|?, and (13) is just the unintegrated Pliicker formulae for [,
derived by Bolton, Jensen, Rigoli and Woodward (cf., [2]).

3. Kahler angle, curvature and degree

If ¢ : M — Gy is a conformal immersion of a Riemann surface M, we define
the Kahler angle of ¢ to be the function 6 : M — [0, 7] given in terms of a
complex coordinate z on M by (cf., [2], [6])

O(p) _ |dp(9/97)|
(14) tanT:W, pe M.
It is clear that 6 is globally defined and is smooth at p unless (p) =0 or 7. ¢
is holomorphic if and only if (p) = 0 for all p € M, while ¢ is anti-holomorphic
if and only if 8(p) = 7 for all p € M.
Let ¢ : §% — Gi,n be a conformal minimal immersion with the harmonic
sequence (5). Then, each ¢, : S — Gy, , in (5) is also a conformal minimal

immersion. So there exists a finite set X, (cf., [2]) such that the K&hler angle
0o : S*\ Xy — [0, 7]

is well-defined, and is smooth on 5%\ X,.

Set to = (tan(fy/2))*. Then, in terms of a local complex coordinate z,
to = la—1/la.
Let ds? be the metric on S? \ X, induced by ¢,. Then
ds? = (lo—1 + lo)d2dz.
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The Laplacian A, and the curvature K, of ds? are given by
Ny = ﬁa& Ko = —ﬁ@glog(la,l +14),
and the area form dv, by
dz N\ dz
2y/—1°
Let ¢(®) = @y @ --- @ @o. Then ¢(®) is holomorphic, and 9'¢(®) = @, 1 (cf.,
12)).

Now choose k() holomorphic C"-valued functions fi,..., fk, so that they
locally span Im ((p(a)), where k() = ko + - + ko Let

F(a)pa(z) =fiA---A fk(a),
where p,(z) is the greatest common divisor of the (k(")) components of

JiAN- A fre,,- Then we have |pa(z)|2 ‘F(O‘)‘Q

dv, = (la—l + la)

= ‘fl/\"'/\fk(a)‘2, and
F(a) ZS2 N C(k(l))

is a nowhere zero holomorphic curve.
Consider the composite of the Pliicker embedding (cf., [10]) with ¢(®),

(15) [P 5% cpli) ™
which is a holomorphic isometry. Then [F(“)] " ds? (o )1 = lodzdz, and we
cPF@
have
_ 2
(16) 99 1og ‘F(”‘) =,

and the degree d, of [F(“)] is given by

_ 2
17)  6a 99 log ’F(“) dz A dz = lodZ A dz,

1 1
C2m/—1 /S 2myv/—1 Jg2

which is equal to the degree of the polynomial function F(®) in z. Then we have

PROPOSITION 3.1 ([12]): Let ¢ : S — Gin be a linearly full non-degenerate
pseudo-holomorphic curve. Assume that ¢ is the a-th element of (5) for some
a=0,1,...,ap — 1, then

1
2my/—1

(18) / 20 log |det QO¢|2 dzNdz =04_1— 204 + 0ot
SZ
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Remark: If (5) is a non-degenerate harmonic sequence, then (18) holds for all
a=0,1,...,ap— 1, where d_1 = 6, = 0; In particular, when kg = --- = ko, =
1, (18) is the global Pliicker formula (cf., [2], [10]). If ¢ : S? — G, is a
pseudo-holomorphic with constant Kéhler angle, then t, = do—1/0a-

We choose k,, local sections hf, ..., hy , which locally span Im(¢, ), such that
JUN- AN foy = Fu N A fraoy NRT N Nhig
We set
(19) pal® = |h¢ A= ARE |
Then |<,0a|2 has some isolated zeros on S?. Evidently, we have

2 2
(20) 1pal2) | F|" = lpacs () [P0 fia.

Specially, we have |@o|” = |fi A+ A faol? = |po(2)]? |F(0)|2. Hence

2
2 « 2 2
pal2)P [FO| = lof” -+ ial”

From (20) it follows that
(21) 201og |val® =lo — la_1,

where « = 0,1,..., ag.
Then we have the following lemma.

LEMMA 3.2: Let ¢ = ¢4 : S? — Gy, . be a linearly full non-degenerate pseudo-
holomorphic curve. Then we have

2
(22) |det Q> = |9|”“+|12| .
Pa

Proof. From (8) it follows that
Qo = W5, 1 0W,

Let H, = (h(f, .. .,h?a) and Hyy1 = (h?“, .. .,hz‘:fl). Then there are in-
vertible (ko X kq)-matrix A, and (ko41 X kq41)-matrix A,41 such that

H, = WaAcw Ha-i—l = Wa+1Aa+1-
Since ¢, is non-degenerate, then we have 0H, = Hy4+1 + HoBq, and

Qo = (A1) HipOHL ALY = (Al ) H Hogn A7
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Hence we have
det(A} 1) "det(H}, 1 Hoy1)  det Agyq

[e3

det 2q = det A4,  det A,

The result is immediate from
lpal? = det (A% Aa)  and  |pai1|® = det (A%, Aat1). B

Let L, be the line bundle spanned by h$ A --- A Ay . If c1(La) denotes the
first Chern class of the line bundle L, then for « =0,1,..., a9

1 _
Ly) = ——— [ 0dlog|pa|*dz A dz.
r(La) = 5= [ OBloglufdz A dz
Hence
1
23 L,)=—— la—1—la)dzZNd
( ) Cl( ) 271'\/—_1 S2( 1 ) < <
and
1
24 Loi1)—c1(Ly) = ——— loc1 —2lg +1log1)dz ANdz.
(24)  a(Lav1) —a(La) P 32( 1 +lay1)dz ANdz
Thus, it follows from (17), (23) and (24) that
(25) Cl(La) = 6a—1 — (Sa,
(26) C1 (La-l-l) —C (La) - _(5a—1 - 26a + 6a+1);
where « =0,1,..., a9, and d_; = 6o, =0.

Let M denote a compact Riemann surface and let ¢ : M — Gy, , be a smooth

map.

Definition ([4]): The degree of ¢, denoted degy is the degree of the induced
map ¢* : H*(Ggn,Z) 2 Z — H?(M,Z) = Z on second cohomology. Note that
a holomorphic map has nonnegative degree (cf., [9]).

By Lemma 5.1 of [4] we have

PROPOSITION 3.3: Let ¢ = ¢, : 5% — G, be a linearly full pseudo-holo-
morphic curve. Then degyp = 04 — 6o—1 and degp™ = —degop.

By Proposition 3.1, Lemma 3.2 and Proposition 3.3 we get

LEMMA 3.4: Let p = ¢, : §? — Gy, .n be a linearly full non-degenerate pseudo-
holomorphic curve. Suppose that |det Q,|?dz*dz*> # 0, then

(1) 501,1 — 25& + 5a+1 = 72]15&,'
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(i) degpat1 —degpa = —2kq.

Proof. By definition (8) of €2, it can be easily checked that ,dz is a matrix-

valued differential form. Let |w§ 2(j =1,...,ka ) be eigenvalues of Q*Q,.
Then |w[?dzdz is globally defined on S2. Since | det Qo [*dzFdz" # 0, we get
for j =1,...,kq, |wj?‘|2dzd2 # 0. Then by the Gauss—Bonnet—Chern theorem

(cf.,[15]) we have
1 _
——— [ 90log|w[Pdz Adz = —2.
o —1/32 og |wf |*dz A dz

Therefore, it follows that

1
27’(\/71 S2

By Proposition 3.1 we have

k
— 1 < —
2 _ a |2 9= _

Oq—1 — 204 + 5a+1 = —2k,.
By Lemma 3.2 and Proposition 3.3 we get
degpat1 — degpa = —2ko. B

We remark that the energy F(L,) of the map ¢, : S? — Gy, defined by
1

B(le) =527 /oo

(o + la_1)dZ A dz,

is also an integer, namely,

(27) E(La) = 60 + 601.

4. Minimal spheres of constant curvature with non-degenerate asso-
ciated harmonic sequence

Let » : S? — Gj, be a linearly full pseudo-holomorphic curve with non-
degenerate associated harmonic sequence (n = k(ag + 1) in this case )

(28) ©Po, P15y Pag :SQHGk,n-

If 0o, 01, .., 0n : S — CP™ is the Veronese sequence (cf., [1], [2]), then for all
a=0,1,...,n,

2
‘F(a) = aq(1+ Zg)(odrl)(nfa), |90a|2 = bo(1+ Zz)n72a,
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and for all a =0,1,...,n— 1,
| det Q4 |*dzdZ = co(1 + 2Z) " 2dzdz # 0,

where above a, b., ¢, are constant.

The Veronese sequence is a totally unramified harmonic sequence by Bolton’s
definition in [2]. Similarly, for general Gy, we say that non-degenerate
harmonic sequence (28) is a totally unramified harmonic sequence if
| det Q4 |%dz*dz* #0 for all a = 0,1,..., a0 — 1.

We say that (28) is a harmonic sequence of constant curvature if each
map of (28) is of constant curvature.

In the following we prove that

THEOREM 4.1: Let ¢ : S? — Gy, be a linearly full pseudo-holomorphic curve
with non-degenerate associated harmonic sequence (28). Suppose that (28) is
a totally unramified harmonic sequence, then

(i) degpa = k(ap — 2a) for all « = 0,1,. .., ap;

(il) Ko = m if K, is constant for some a =0,1,--- , ap.

Proof. By Lemma 3.4 we can get
0o = k(a+1)(ap — @),
foralla =0,1,...,qp.
By Proposition 3.3 we have
degpo = 0o — 0a—1 = k(o — 2a).

If the Gaussian curvature K, of ¢, is constant, then K, is given by
4 4

K, = - .
Oa—1+0a  k(ao+2a(ap — a))

The following corollary is an immediate consequence of Theorem 4.1.

COROLLARY 4.2: Let ¢ : S — Ghn,2n be a holomorphic curve of constant
curvature. Suppose that o is non-degenerate, then K(p) = 4/n.

Note: It can easily be checked that | det Q0 |2dz*dz" = (1 + 22) 2" dz*dz* for
all a =0,1,...,a9 — 1 if (28) is a harmonic sequence of constant curvature.

It is well-known that for £ = 1, (5) determined by a conformal minimal sphere
of constant curvature in a complex projective space is a harmonic sequence of
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constant curvature. Furthermore, (5) is the Veronese sequence, up to an isom-
etry of CP™ (cf.,[1], [2]). In the following, we will give an example to conclude
that it is a possibility that this result doesn’t hold for Gy, (2 <k <n —2).

We consider a non-degenerate harmonic sequence in Gz ¢ (ap = 2):

o' o' o' o'
00— o — @1 — 2 — 0,

where g : S2 — G is a holomorphic curve of constant curvature.

We will construct g such that 1 and @9 are not maps of constant curvature.

St Im(pa) = span { fa(2,7), ga(2,3)}, Where fa(2,%) and ga(2,%) are two
(local) linearly independent sections of S? x C%, o = 0,1, 2.

We choose two local sections fy(z) and go(z) of Im(po), which is a holomor-
phic subbundle of §% x C8, as follows:

1 V31 9 VT o1

2)= (1,0, —=2z, —=2%, ——=22, 0), Z) = (0, 1, 0, 0, —=%, —22).
fol) = (1,0, Z52, S22 oo 90(2) 5 3

From Im(¢1) = Im (¢gd¢o) it follows that two local sections f1(z,%) and
91(2,%Z) of Im(¢7) are given by

fu(5,7) = <x51>7 wgl), xél), %(11), $é1)7 xél)),

91(2,7) = (yﬁ R S T yél)),

where
RO (4+ 782z + 632227 4 162°7°) L0 9274+ 27)
1 8 ’ 2 4\/5 ’

(1) 8+ 2827 — 302277 — 31237° — 8z%z*
T3 = )
8v2
V31z (16 + 6027 + 182727 + 2°2°)
167 ’

o

2V = 9z (16 + 427 + 4222° + 237°) 7 2V 92°2(4 + 27) ;
167 8v/2
1y 92° (-4 +2°7°)
Yy = 8—\/5’
S — Z (28 + 1827 + 332727 4 162°2%)
2 ] )
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S0 = 927 (—4 + 2%2%) S = 9v/312222 (—4 + 222?)
s 16 ’ * 16v/14 ’
1y 112+ 5627 4+ 96222% — 142°2° — 31292*

Yoo = 16114 ’

(1) 2 (16 43627 4 78272 + 312%2°)

Ys = 16 :

Similarly, two local sections fa(z,%) and g2(z,%) of Im(p2), which is an anti-
holomorphic subbundle of $? x C8, are given by

92(2,7) = (y§2)7 ), u”, v, o, yff)),

where
2P = 222 (124 + 12827 + 312%27) 2 = —72v/2:72,
44/31 (28 + 827 + 72722
o) = —4v2z (124 + 12822 + 312%2%), 2P = V3L ) ,
V7

(2) _ 2882z (2)
Ty = , Ty = —144\/52:;

5 \/7 6
y? = 72275, ys?) = 227 (28 + 24827 + 312%22)

2272 z
y§2) _ 28822, yf) _ 36v/6227%(8 + ZZ)’
VT

@ 427 (28424827 + 312%2?) (
y5 = - \/? ) y6

It is very easy to see that rank(pg) = rank(yp;) = rank(yp2) = 2. Hence

%) = 4 (28 + 24827 + 312%2%) .

©0, 1,2 1 S — Ga,6 is a non-degenerate harmonic sequence.
An immediate computation shows that the induced metric by ¢ is given by

ds} = Sdzdz,

(14 22)
and the induced metric by g9 is given by ds3 = 8\2dzdz, where \2 = A/B?,
A = 14336 + 658562 + 19790422 + 19945623 + 90984z* + 18228x° + 145725,
B = 112 + 1024z + 117622 + 37623 + 312*, z = 2z. By [12] we get that the
induced metric ds? by ¢ is ds3 + ds3. It can easily be checked that curvature
K (npo) of pg is 1, and ¢1 and ¢, are not maps of constant curvature, namely,
©0,P1,p2 1 S — G2 is not a harmonic sequence of constant curvature.
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Furthermore, by a direct computation we get

lpol® = (14 22)*,
o 1124102427 + 11762222 + 3762%23 + 31242*
"= (1+ 22)* ’
- 1
1124102427 4+ 11762222 + 37623%2% + 31247
Then by Lemma 3.2 we have
112 4 102427 + 11762222 + 376232% + 3124%*
(1+ 27)8
(1+ 22)*
(112 + 102427 + 1176222 + 37625%° 4 3124z*)
Therefore, this is a totally unramified harmonic sequence.

|801

|802

| det Qo|?dz%dz? = dz?dz* # 0,

| det Q, |2dz2dz? = Sdz2dz* £ 0.

In [12] a harmonic sequence of constant curvature was given. This shows that
the case of complex Grassmann manifolds is very complicated, and it is very
difficult for classification of pseudo-holomorphic spheres of constant curvature

in a complex Grassmann manifold.

5. Minimal spheres with constant Kahler angle

In this section we will discuss pseudo-holomorphic curves with constant Kahler
angle in a complex Grassmann manifold. We know that the pseudo-holomorphic
curve of constant curvature has constant Kahler angle (cf. [12]).

Let ¢ : S — Gy, be a pseudo-holomorphic curve with constant Kéhler angle

0, and let o, @1, ..., ¥q, be its associated harmonic sequence. Let ¢ = ¢, for
some o =0,1,...,a0.
Suppose that g, @1, ..., Pa,is a totally unramified non-degenerate harmonic

sequence, then from results of the above section it follows that
alag—a+1)
(a+1)(ap—a)

Since t, is constant, then we have

(29) to =

5ala—1 = 5u—1la-

Then by (16) it is not difficult to get that there exists a non-zero constant ¢

such that
2001 20a

(30) ‘F(‘“)

=c ‘F(O‘*l)‘



58 XIAOXIANG JIAO Isr. J. Math.

Thus we can prove the following theorem, which is similar to Theorem 9.2 in
[2].

THEOREM 5.1: Let ¢ : S? — Gy, be a linearly full pseudo-holomorphic curve
with constant Kahler angle, and let ¢g, p1,...,¢a, be its associated harmonic
sequence with ¢ = ¢,. If é, and 0,_1 are coprime, then ¢ is of constant

curvature.

Proof. By (30), ’F(“)’2 and ’F(“_l)f, as elements of C[z,Z], have the same
prime factors. Suppose that P(z,Z) is a prime factor with degree d in z. Then
we have

Saild, dald.

Since d, and §,_1 are coprime, then d must be 1. Therefore, we have

2 2
[P = Pz, 2%, [P = P22y,

Without loss of generality, we may assume that P(z,Z) = A+ Bz + Bz + D2z
for some complex numbers A, B, D with A, D real, and AD — BB > 0. Then,
using (16) we have
— AD — BB
la—1+ 1o = (0a—1 + 04)00log P(2,Z) = (0q—1 + 0a) ———5—,
1+ (ba—1+ 0a)001og P(2,Z) = (da-1 + )P(Z,Z)Q
which implies that ds? = (I,_1 + lo)dzdZ is of constant curvature. |

In fact, if @0, ¢1,...,9a, is a totally unramified non-degenerate harmonic
sequence, then from Theorem 4.1 it follows that

(0a—1,00) =k (a(ag —a+ 1), (a+ 1)(ap — a)) > k.

Therefore, it is impossible that d,_1 and §, are coprime for totally unramified
non-degenerate harmonic sequence g, ©1,. .., Qa, : S? — Grn (2<k<n-2).
If cg and o + 2 are consecutive prime integers, then

(0a-1,00) = k(a(a+1),a0 —2a) = k(a+1,a0 + 2) = k.
Hence, when k is a prime number, above d must 1 or k£, namely, ‘F (a)‘Q and

’F(“_l)f possibly have prime factors with degree k in z. Thus we get the
following theorem.

THEOREM 5.2: Let ¢ : 8% — G, be a linearly full pseudo-holomorphic curve
of constant Kahler angle with a non-degenerate associated harmonic sequence
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©05 P15 - -+ Pagy- Suppose that ©o, 1, ..., Pa, is totally unramfied with ¢ = @,
for some o = 0,1,..., a0 — 1. If oy and «g + 2 are consecutive prime integers,
and if k is a prime number, then ¢ is of constant curvature unless |¢|? or |p| =2
has prime factors with degree k (2 <k <n—2) in z.

Theorem 5.1 and 5.2 are generalizations of Bolton’s results (cf. [2]).
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